A119 – CALA CHECKLIST FOR CRYPTOSPORIDIUM/GIARDIA Revision 1.7 May 6, 2020 | Laboratory Name: | | |-------------------------|--| | Appendix Name: | | | | | | Appendix Number: | | | Assessor: | | | Date: | | ### **ASSESSOR NOTES:** Version 1.7 ## CRYPTOSPORIDIUM/GIARDIA FILTRATION CHECKLIST | Clause | Requirement | Document
Review
1 2 3 | Implementation | |------------------------|--|-----------------------------|----------------| | 7.2.1.2 | Document review: verify that there is a documented method. Implementation: verify that the current authorized test method and necessary supporting work instructions are available to the analyst. (Based on EPA 1622/1623, December 2005. | | | | 7.2.1.5
or
7.2.2 | Document review: verify that there are method verification (7.2.1.5) or validation (7.2.2) results, and a statement that the method is fit for the intended use. Implementation: Method is validated or verified in laboratory and includes: | 000 | | | | Analyst Competence; | | | | | Initial Precision & Recovery (spike and process 4 reagent water samples); | | | | | Method Blank; | | | | | Matrix Spike; | | | | | Method Precision: after 5 Matrix Spike samples, calculate mean % recovery (P)
and SD% recovery (S_r); | | | | | Participate in PT: as per P02-03 – CALA Program Description - Proficiency Testing Policy for Accreditation; lab follows up on any unsatisfactory results. | | | | | • Statement of Laboratory Accuracy: calculate the mean % recovery (R) and SD % recovery (S_r). Express accuracy as a recovery interval from R-2 S_r to R+2 S_r . (Ex. if R = 95% and S_r = 25%, the accuracy is 45% to 145%). | 000 | | | | Procedures required for method modifications: | | | | | Initial Precision & Recovery (IPR); | | | | | Matrix Spike/Matrix Spike duplicates (recommended). | | | | 7.2.1.3 | Verify that all necessary successive steps in the test procedure are adequately documented in the test method, and are based on the latest valid edition of a published reference method, including: | | | Revision 1.7 Page 1 of 13 | Clause | Requirement | Document
Review | Implemen-
tation | |--------|---|--------------------|---------------------| | | | 1 2 3 | 1 2 3 | | | details on reagent preparation, storage and shelf-life; | | | | | equipment; | | | | | supplies; | | | | | processing. | | | | | Test Method Procedures (Processing Flowchart helpful). | | | | | Sample Filtration and Elution (EPA 1623:12.0) | | | | | Envirochek capsule – Filtration, Elution, Concentration; | | | | | Filta-Max – Filtration, Elution (wash station OR stomacher), Concentration (Filta-Max concentrator OR Centrifuge), Membrane Elution (manual or stomacher wash); | | 000 | | | Portable Continuous-flow Centrifugation. | | | | | Sample Concentration and Separation (Purification) | | | | | Adjustment of Pellet Volume (analyze entire (all subsamples) or partial sample); | | | | | IMS – capture, dissociation. | | | | | Staining | | | | | Examination | | | | | FITC or DAPI or DIC | | | | 7.4 | Verify that sample history requirements are 1) documented and readily available and 2) appropriate and implemented; i.e., | | | | | Procedures specified to protect integrity of sample during transport, including: | | | | | Sampling Instructions for clients; | | | | | Sample Volume: described/documented, qualify results as necessary; | | | **Revision 1.7** Page 2 of 13 | Clause | Requirement | Document
Review
1 2 3 | Implementation | |--------|--|-----------------------------|----------------| | | Shipping Temperature Monitoring: | | | | | for filters – temperature | | | | | sample or thermometer vial, infrared thermometer; | | | | | for filters and bulk samples - data logger (calibrated), temperature strip; | | | | | ice/cold packs required. | | | | | Sample Acceptance and Holding Times Criteria: | | | | | sample volume; | | | | | samples received same day or kept cool during transport (0°C < specimen
temperature < 20°C) or must reject; | | | | | moisture provided (filters). | | | | | Processing Times: | | | | | samples eluted <96 hrs after filtration in field or filtered <96hrs after bulk
collection; | | | | | elution, concentration, purification, applied to slide – in one day; | | | | | staining <72hs after application to slide; | | | | | reading <7days after staining (adjust if fading). | | | | 6.4 | Document review: verify that procedures are in place for maintenance of oocyst and cyst stocks, and that they are documented and readily available. | | | | | Implementation: verify that procedures are followed. | | | | | Oocyst and Cyst Stocks - for Staining Controls, etc. | | | | | • Crypto oocyst stock – unstained, not formalin-fixed, C. parvum < 3 months old – Sterling Parasitology Lab, Uof Arizona; | | | | | Giardia cyst stock – unstained, not formalin-fixed, G. intestinalis < 2 weeks old - | | | | | Waterborne Inc New Orleans, Hyperion Research – Medicine Hat. | | | | | Oocyst and Cyst Spikes - Flow Cytometer-Counted Spiking Suspensions required. | | | | | BioTechnology Frontiers (BTF) Easyseed; | | | | | Wisconsin State Laboratory of Hygiene. | | | Revision 1.7 Page 3 of 13 | Clause | Requirement | Document
Review
1 2 3 | Implementation | |--------|---|-----------------------------|----------------| | | Procedure – Preparing Spikes – reagent water spikes (IPR), matrix spikes. | | | | 7.7 | Verify that method (and media) quality control is 1) either included or referenced in the test method and 2) implemented; i.e., Method QC. | | | | | Initial Demonstration of Laboratory Capability (IDC). | | | | 6.2 | Analyst Competence: | | | | | résumés, training records, number of samples | | | | 7.7 | Initial Precision and Recovery (IPR): | | | | ı | Spiking procedure - perform X4 with 100-500 oocysts; | | | | | One Method blank – include with the 4 spikes; | | | | | Method Modifications: separate IPR for each modification; | | | | | Criteria: >50% oocysts must be intact - characterize (FITC, DAPI, DIC) and document | | | | | Criteria: Precision - % recovery for each organism, mean percent recovery and RSD (SD/meanX100) meets IPR acceptance criteria EPA 1623:Tables 3 & 4 | | | | | Ongoing Demonstration of Laboratory Capability and Method Performance (ODC): | | | | 6.2 | Analyst Competence: monthly verification & corrective actions | | | | 7.7 | Ongoing Precision and Recovery (OPR): (EPA 1623:9.7) - one/wk or 20 samples. | | | | | Enumerated spiking suspension in reagent water; | | | | ĺ | Method modifications - separate OPR for each modification. | | | | | Criteria: | | | | | >50% oocysts must be intact - characterize (FITC, DAPI, DIC) and
document; | | | | | unacceptable, samples associated with blank are unacceptable. Halt
analysis until follow up OPR is acceptable. | | | Revision 1.7 Page 4 of 13 | Clause | Requirement | Document
Review
1 2 3 | Implementation | |--------|---|-----------------------------|----------------| | | Precision - % recovery for each organism, meets acceptance criteria EPA
1623: Tables 3 & 4. Express as %recovery interval from P-2s to P+2s for
each matrix. If recovery | | | | | Statement of Laboratory Accuracy: calculate the mean % recovery (R) and SD % recovery (S _r). Express accuracy as a recovery interval from R-2 S _r to R+2 S _r . (Ex. if R = 95% and S _r = 25%, the accuracy is 45% to 145%) | | | | | Matrix Spike: procedure to determine number of internal spikes from each source, including 1st sampling event (preferably): | | | | | • taken from same location as field sample and ± 10% of field sample volume, split or sequential samples; | | | | | perform X4 with 100-500 oocysts; | | | | | Criteria: %recovery meets acceptance criteria EPA 1623:Tables 3 & 4. | | | | | Method Precision: | | | | | • after 5 Matrix Spike samples, calculate mean % recovery (P) and SD% recovery (S _r); | | | | | update regularly, stratify for all sources. | | | | | Matrix Spike Duplicate – not required. | | | | | Method Blank: procedure to determine number, include after change of source of reagent water: | | | | | best analyzed immediately after IPR and OPR and prior to samples for the week; | | 000 | | | Criteria – negative. If any interfering organism/material – samples associated with blank are assumed contaminated. Halt analysis until follow up blank is negative. | | 000 | | | (Optional: field replicates for precision of sampling technique, duplicate spiked samples for precision of analysis). | | | **Revision 1.7** Page 5 of 13 | Clause | Requirement | Document
Review
1 2 3 | Implementation | |---------|--|-----------------------------|----------------| | | Staining Controls: | | | | | stock oocysts and cysts or prepared slides (Wisconsin State Laboratory of Hygiene) | | | | | or controls included with stain; every stain run – all analysts reading in that stain run, characterization, documented. | | | | | <u>Control Charts</u> – for processing, reagent lots, equipment, analysts | | | | | Minimum - OPR Control Charts (% recovery vs date) | | | | | Data includes: | | | | | Date; | | | | | Count; | | | | | Estimated # spiked; | | | | | Analyst; | | | | | % recovery; | | | | | Mean recovery; | | | | | • SD; | | | | | Upper/lower control limits. | | | | 7.2.1.2 | Verify that all necessary supporting work instructions are documented and readily available e.g.: | | | | | glassware cleaning procedures; | | | | | sample disposal procedures; | | | | | supporting test methods (e.g., pH); | | | | | equipment instruction manuals; | | | | | requisite reference texts; | | | | | computer software related procedures (including LIMS procedures, such as data
entry and approval); | | | | | procedure for checking all manual calculations; | | | | | disinfection/sterilization and disposal of biohazardous material. | | | | 7.2.1.3 | Verify that the test procedure and all supporting work instructions are performed as documented. | | | | | Process flowchart recommended (see example). | | <u> </u> | Revision 1.7 Page 6 of 13 | Clause | Requirement | Implementation | |--------|--|----------------| | 6.4 | Verify that all instruments required for the test procedure are available, uniquely identified, functioning properly, and safeguarded from adjustments that would invalidate results, including: | | | | • a regularly scheduled maintenance program for each piece of equipment, where appropriate and records of service where service was required; | | | | availability of back up equipment or a back-up plan in case of equipment failure. | | | | Sampling Equipment: | | | | Coolers; | | | | Temperature monitoring devices; | | | | Filtration equipment if done in field. | | | | Filtration Equipment: | | | | Envirochek; | | | | Filta-max; | | | | Portable Continuous-Flow Centrifuge (PCFC); | | | | Pump – place on effluent side of filter to reduce contamination; | | | | Flow meter or graduated carboy. | | | | Elution Equipment | | | | Envirochek - lab shaker, etc.; | | | | Filta-max (or stomacher). | | | | Concentration Equipment | | | | Centrifuge – traceable calibration, RPM and RCF (relative centrifugal force) RCF = 0.0000118rN2 where r = rotational radius (cm) and N = rotating speed (rpm); | | | | Filtamax – concentrator, magnetic stirring plate, etc. | | | | Spiking Equipment | | | | 10L container with spigot - discard after one use - OR 10L carboy with bottom delivery port – calibrate 10L and mark level with waterproof marker OR inline spiking channel. | | | | IMS Apparatus | | | | sample mixer; | | | | vortex;; | | | | magnetic particle concentrator for 10mL test tubes; | | **Revision 1.7** Page 7 of 13 | Clause | Requirement | Implemen- | |--------|---|-----------| | | | tation | | | | 1 2 3 | | | magnetic particle concentrator for microcentrifuge tubes; | | | | Leighton tubes | | | | Staining Equipment | | | | Humid chamber; | | | | Slide warmer (optional). | | | | Microscope - dedicate microscope to settings to assure reproducible results; | | | | • ocular micrometers, 20X and 100X objectives, DIC, FA 450-490nm exciter filter, 51-nm beam | | | | splitting mirror, 515-520 nm barrier filter, DAPI filters, non-fluorescing immersion oil Type FF; | | | | • light bulb log - maximum: 50 watt – 100 hrs, 100 watt – 200 hrs; | | | | epifluorescent mercury bulb adjustment, transmitted bulb adjustment, interpupillary | | | | adjustment, ocular adjustment; | | | | calibration of ocular micrometer; | | | | Köhler illumination. | | | | Micropipette(s) – 0-10ul, 10-100uL, 100-1000uL: | | | | traceable calibration – at least annual; | | | | • in-house checks 10 replicates at 100/50/10% of capacity – RSD <1% & trueness<1% for each | | | | capacity. | | | | Refrigerators for sample and reagent storage are maintained within the specified temperature range and temperatures monitored and recorded daily, no frost-free freezers. | | | | Incubators checked annually, maintained within the specified temperature range; temperatures monitored and recorded at least once daily (suggest continuous monitoring or twice daily or using a | | | | min-max thermometer) (if used for staining). | | | | | | | 6.4 | Verify that all support equipment required for the test procedure is available, functioning properly, | | | | and where necessary, calibrated; e.g., computers, pH met: | | | | Analytical Balance – traceable calibration (0.1mg); | | | | Top Load Balance – traceable calibration (10mg);; | | **Revision 1.7** Page 8 of 13 | Clause | Requirement | Implementation | |--------|--|----------------| | | pH meter – calibration, scale graduations 0.1 units; | | | | Vacuum source – 25 in Hg, with gauge and shutoff valve; | | | | Shipping temperature monitoring devices - thermometer vial, data logger, infrared | | | | thermometer – traceable calibration; | | | | Thermometers – traceable calibration; | | | | Timers - traceable calibration; | | | | Autoclave - procedures to ensure autoclave is functioning properly (e.g., monthly test of
autoclave performance using a spore strip or spore suspension, capable of demonstrating a 6
log kill of Bacillus stearothermophilus), log of autoclave use - i.e., items, temperature, pressure,
time. | | | 6.4.9 | Verify that out of service equipment is clearly isolated or clearly labeled or marked as being out of service, and that equipment is checked and validated before return to service. | | | 6.4.8 | Verify that all equipment requiring checks or calibration is labeled to indicate the status, including the date last checked/calibrated and expiry date or date when due* (e.g., checks of biosafety cabinet, calibration of semi-automated pipettes and thermometers). * not required for equipment checked daily or as-used; see P07. | | | 6.4 | Verify that all supplies required for the test procedure are available and meet requisite requirements and/or specifications (includes test organisms, reagents, reference materials,); specifically: • records of reference standard/material certificates: | | | | stock oocysts and cysts; | | | | flow cytometer-counted spiking suspensions; | | | | NaOH and HCL – must be unadjusted from supplier; | | | | solvents – acetone, glycerol, ethanol and methanol – ACS reagent grade; | | | | if producing water in-house and it is used to make media or reagents, check conductivity daily or as-used and verify it is analyzed for parameters as per the most current version of Standard Methods 9020; | | | | if purchasing distilled water, and it is used to make media or reagents, verify that total heavy
metal requirements are met (see most current version of Standard Methods) and do HPC
checks monthly or on each batch purchased; | | **Revision 1.7** Page 9 of 13 | Clause | Requirement | Implemen-
tation | |--------|---|---------------------| | | | 1 2 3 | | | sterile rinse buffer/distilled water available. | | | | | | | | | | | | Sampling/Filtration/Elution | | | | Bulk Sample containers - 10L – use only once; | | | | Tubing. | | | | Filta-max | | | | Filta-max foam filter - check at least 1 filter per batch that it expands properly before shipping | | | | filters to the field; | | | | Membrane filters - FMC 10800; | | | | conical centrifuge tubes - 50 mL, 250 mL. | | | | Envirochek | | | | Envirochek sampling capsule; | | | | Conical centrifuge tubes - 250 mL conical. | | | | IMS | | | | 10 mL, 1 mL graduated pipettes; | | | | microcentrifuge tubes - conical, graduated, 1.5mL, 50mL and 150mL; | | | | Dynabeads or equivalent. | | | | Staining | | | | • Direct antibody labeling reagents - MeriFluor, Aqua-Glo, Crypt-a-Glo/Giardia-a-Glo, or EasyStain; | | | | If using multiple types, demonstrate performance (precision and recovery) for each time and | | | | +/- controls for each batch; | | | | Monitor for each source water type; | | | | Mounting medium DABCO, MeriFluor, Aqual-Glo, EasyStain, Elvanol or equivalent permanent, | | | | non-fade archiving mounting medium. | | | 6.4 | Verify that all supplies are stored under appropriate conditions (as specified in reference method or | | | | by regulator etc.) and in a manner which satisfies requirements for safety, security, separation of | | | | incompatible materials, and ease of retrieval. | | | | | | | | | | **Revision 1.7** Page 10 of 13 | Clause | Requirement | Implementation | |--------|--|----------------| | | Reagents | | | | Eluting Buffers - 1 week or until turbid; | | | | Laureth 12 - 10% solution in reagent water, 10mL aliquots, room temp 2 months, frozen 1 yr; | | | | Reagents for IMS - as per manufacturer; | | | | Antibody labeling reagents and diluent (PBS) - 1°-10° C, dark. Discard diluted reagent after 48 hrs or expiry date; | | | | DAPI - stock solution – 1° -10° C, dark, discard when (+) control fails or after time determined by lab; | | | | DAPI - staining solution - prepare daily, 1° -10° C, dark. DAPI concentration may be increased if
fading but solution must be tested first on environmental samples to confirm that staining
intensity is appropriate. | | | 6.4.8 | Verify that all reagents and media (above) are labeled with material, concentration or purity, date prepared and/or expiry date; verify that media is appropriately labeled, stored under proper conditions, and storage times are met. | | | 6.4.8 | Verify that all information required to properly identify test organisms appears on their containers | | | | (i.e., name or number of organism, and date subcultured). | | | 6.4 | Verify that all labware is adequately cleaned and, where required, labware quality control incorporates analytical testing; specifically: | | | | use of clean labware | | | 7.5 | Maintain records related to the performance of the test method; e.g.: | | | | analyst worksheet or notebook – esp. microscope log book (stain controls), bench sheets, slide
examination forms. Include content of EPA microscope log book, bench sheets, slide
examination forms as appropriate; | | | | record of nonconformances and actions taken, esp. corrective actions for OPR failures, method
blank contamination, staining control failures; | | | | reagent preparation log | | | | equipment maintenance log | | | | stock culture maintenance log | | | | records of gravimetric traceability | | | | records of volumetric traceability | | **Revision 1.7** Page 11 of 13 | Clause | Requirement | Implemen- | |--------|--|-----------------| | | | tation
1 2 3 | | | records of temperature traceability | | | | records of environmental conditions monitored; | | | | records to define the quality of data generated. (Laboratory Accuracy Statements); | | | | records of analyst training and competency; | | | | records of sample receipt information – date/time of sampling & receipt, sample condition,
transportation. | | | 6.3 | Verify that environmental conditions do not adversely affect the quality of any measurement: | | | | effective separation between incompatible activities; | | | | appropriate surfaces (smooth surface on floors, walls, ceiling and benches; | | | | access to laboratory controlled; | | | | good housekeeping; | | | | disinfectants available and used routinely for cleaning bench area. | | | 6.2 | Person responsible for signing authority and data validation possesses the technical knowledge relevant to the scope of accreditation. | | | | Verify that technicians have demonstrated competency relative to the test being accredited. | | | | Note: There is no standard reference material (slides) available (i.e. enumerated DAPI (+/-) oocysts). | | | | analyst – if astigmatism, wear glasses or contact lenses; | | | | training procedure and records; | | | | monthly verification procedure and records. | | | | Single/Multiple Analysts: | | | | Maintain Protozoa library - photographs (FA, DAPI, DIC) and diagrams of oocysts and interfering
materials, describe, quantify; | | | | Monthly/as used – prepare slide with 40-200 cysts and 40-200 oocysts with >50% positive DAPI
and undamaged under DIC: | | | | Each analyst counts and records total undamaged oocysts by FITC. Counts must be ≤10% of
each other. If fail, identify source of variability and repeat verification. | | | | On same slide or any OPR, MS or (+) stain control slide, select 10 oocysts and 10 cysts: | | | | Each analyst determines and records: | | | | DAPI category – DAPI (-), DAPI (+), DAPI (+ - number of nuclei); | | Revision 1.7 Page 12 of 13 | Clause | Requirement | Implemen-
tation | |--------|--|---------------------| | | | 1 2 3 | | | DIC category – empty, containing amorphous structures, containing identifiable internal
structures. | | | | Discuss and resolve differences among analysts; | | | | Document verification (names, date, results, pass/fail, results of attempts, corrective actions) | | | | Single Analyst | | | | Perform repetitive counts of a single verification FITC slide. | | | 7.8 | Verify that test report content is complete: | | | | appropriate reporting of non-detects, taking dilution factors and sample volumes into
consideration; | | | | procedures in place for reporting of adverse results to authorities having jurisdiction | | Revision 1.7 Page 13 of 13